

JOINT UNIVERSITIES PRELIMINARY EXAMINATIONS BOARD JUNE 2019 EXAMINATIONS

JUPEB/017E

PHYSICS: SCI-J155	Time Allowed: 3 hours
No. of the second secon	

SECTION A: MULTIPLE CHOICE QUESTIONS

Answer all questions in this section.

Use the OMR answer sheet provided to answer the questions, follow the instructions on the OMR sheet.

SECTION B: ESSAY QUESTIONS

Answer FOUR Questions in all; ONE from each Course.

TABLE OF CONSTANTS

Speed of light in free space $c = 3.00 \times 10^8 \text{ ms}^{-1}$ Permeability of free space $\mu_o = 4\pi \times 10^{-7} \text{Hm}^{-1}$

Permittivity of free space $\varepsilon_o = 8.85 \times 10^{-12} \, \text{Fm}^{-1}$

(1/(36π)) x 10-9 Fm-1

Elementary charge $e = 1.60 \times 10^{-19} \text{ C}$ Planck's constant $h = 6.63 \times 10^{-34} \text{ Js}$

Unified atomic mass constant $u = 1.66 \times 10^{-27} \text{ kg}$

Rest mass of electron $m_e = 9.11 \times 10^{-31} \text{ kg}$ Rest mass of proton $m_p = 1.67 \times 10^{-27} \text{ kg}$ Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{mol}^{-1}$

The Avogadro's constant $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ The Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^2$

Acceleration of free fall $g = 9.81 \text{ ms}^{-2}$

SECTION A: MULTIPLE CHOICE QUESTIONS

Answer all questions in this section

- When the word 'specific' is used in thermal physics it refers to ______
 - A. unit temperature.
 - B. unit mass.
 - C. unit heat.
 - D. unit time.
- 2. Given three vectors, $\mathbf{A} = 3\mathbf{i} \mathbf{j} + 3\mathbf{k}$, $\mathbf{B} = -\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\mathbf{C} = -3\mathbf{i} + 5\mathbf{j} 3\mathbf{k}$.

Find: (A + B).C

- A. -7
- B. -8
- C. -10
- D. -14
- Neglecting air resistance, a feather and a stone dropped at the same time from the same vertical height above ground level will land to the ground at the same time because
 - A. they are at the same height above ground level.

В.	they are both solids.					
C.	they are falling with equal acceleration.					
D.	they are released at the same time.					
A mis	ssile of mass 10Kg was launched at an angle 45° to the horizontal. If its launching					
velocity is 10m/s, neglecting air resistance, what will be its kinetic energy at its highest altitude?						
	500 J					
	0.1					
	50√2 J					
	250 J					
If the	net force applied in the direction of motion to a certain object on a horizontal					
	onless surface is doubled, the acceleration of the object is					
A.	halved.					
B.	doubled.					
C.	unchanged.					
D.	quadrupled.					
A 20kg box is pulled along the level ground by a rope inclined at an angle of 30° above						
the horizontal. The coefficient of friction between the box and the ground is 0.20. How						
large	is the pulling force if the box is moving with an acceleration of 0.40m/s ² ?					
A.	8N					
B.	200N					
C.	208N					
D.	50N					
It is n	ot possible to determine exactly and simultaneously the position and momentum of					
a part	icle. This statement is known as					
A	Compton effect.					
B.	de Broglie's law.					
C.	Heisenberg's uncertainty principle.					
D.	Wave-particle paradox.					
A body moves a distance of $\vec{\mathbf{r}} = 2\hat{\imath} - 5\hat{\jmath} - 2\mathbf{k}$ (in metres) under the action of a force						
$\vec{\mathbf{F}} = 2$	2î − 2ĵ − k (in newtons). Find the work done by the force.					
A.	8J					
B.	11J					
C.	16J					
D.	18J					
Whic	h of the following factors do the period of a simple pendulum depend?					
I.	The mass of the pendulum					
II.	The amplitude					
III.	The length of the pendulum					
	C. D. A mis veloc altitude A. B. C. D. If the friction A. B. C. D. A 201 the helarge A. B. C. D. It is not a part A. B. C. D. A book $\vec{\mathbf{F}} = 2$ A. B. C. D. Which I. II.					

	A.	II only				
	B.	III only				
	C.	II and III only				
	D.	I, II and III				
10.	A cor	npact disc accelerates uniformly from rest to an angular speed of 300rpm in 2s.				
	Calcu	late the angular acceleration of the disc.				
	A.	7.8rad/s ²				
	B.	2.5 rad/s ²				
	C.	15.7 rad/s ²				
	D.	10.7 rad/s ²				
11.	The a	cceleration 'a' of a simple harmonic oscillator is related to its displacement 'x' by the				
	equat	ion $a = -100x$. What is the frequency of the oscillation?				
	A.	0.63 Hz				
	B.	63 Hz				
	C.	1.6 Hz				
	D.	100 Hz				
12.	When a mass m is hung on a spring, the spring stretches by 8.0cm. Determine its period					
		oration if it is slightly pulled and released.				
	A.	0.3s				
	B.	0.6s				
	C.	0.8s				
	D.	1.2s				
13.		trol flows at 4m/s through a hose of 10mm diameter. What nozzle diameter will				
		ense it at the rate of 16m/s?				
		5.0 mm				
		2.5 mm				
		20.0 mm				
	D.	40.0 mm				
14.		draulic lift has a narrow cylinder of diameter 4 cm and wide cylinder of diameter 30 cm				
		late the force that must be applied to the liquid in the small cylinder to lift a 1500 kg car.				
	A.	298.6 N				
	В.					
	C.	843. 8 N				
	D.	587.2 N				
15.	An i	mage which can be formed on a screen is said to be				
	A.	virtual.				
	B.	blurred.				
	C.	inverted.				
	D	real.				

16.	Equa	Equal volumes of gas at the same conditions of temperature and pressure				
	A.	contain the same number of molecules.				
	B.	have the same density.				
	C.	have the same mass.				
	D.	have the same ionization potential.				
17.	The	temperature of a liquid that is boiling does not increase even though heat is being				
	conti	nuously supplied because				
	A.	heat supplied is used to break the molecular bonds in the liquid.				
	В.	there are impurities in the liquid.				
	C.	the latent heat of fusion of the liquid is greater the latent heat of vapourization.				
	D.	the atmospheric pressure is high.				
18.		at temperature are the numerical values of the Fahrenheit and Celsius scales equal?				
	A.	-0^{0} C				
	B.	-40°C				
	C.					
	D.	180°C				
19.		t is most likely to happen to both the density and volume during anomalous nsion of water?				
	A.	Volume decreases and density decreases				
	B.	Volume increases and density decreases				
	C.	Volume decreases and density increases				
	D.	Volume increases and density increases				
20.	An e	lectric current of 3A flowing through an electric heating element of resistance 20Ω				
	embe	edded in 1000g of an oil, raise the temperature of the oil by 10°C in 10 seconds,				
	then	the specific heat capacity of the oil is				
	A.	1.8Jg ⁻¹				
	B.	0.6Jg ⁻¹				
	C.	0.18Jg ⁻¹ C ⁻¹				
	D.	1.8Jg ⁻¹ C ⁻¹				
21.	A thermodynamic process that does not allow heat to enter or leave the system is					
	A.	isobaric.				
	B.	adiabatic.				
	C.	isothermal.				
	D.	isochoric.				
22.	An i	deal gas is maintained at constant pressure. If the temperature of the gas is increased				
	from	200 K to 600 K, what happens to the rms speed of the molecules?				
	A.	It increases by a factor of 3.				

B. It remains the same.

	C.	It is one-third the original speed.				
	D.					
23.	The elec	tromagnetic waves are arranged in which of the following order of increasing				
	wavelength?					
	A.					
	В.					
	C.					
	D.					
24.	All are	e properties of images formed by a plane mirror except				
	A.	It is laterally inverted.				
	B.	It is erect.				
	C.	It is magnified.				
	D.	It is virtual.				
25.	An ol	bject is placed 20cm in front of a concave mirror of radius of curvature 30cm.				
	Calcu	alate the position and nature of image formed.				
	A.	60cm, real				
	B.	30cm. real				
	C.	60cm, virtual				
	D.	30cm, virtual				
26.	For th	ne correction of hyperopia defect in the human eye we require				
	A.	a concave lens.				
	B.	a convex lens.				
	C.	a prism.				
	D.	a combination of concave and convex lenses.				
27.	An as	stronomical telescope has an objective lens of focal length 0.5m and an eyepiece of				
	focal	length 2cm. What is the separation of the lenses when the telescope in normal				
	adjus	tment views a distant object?				
	A.	52cm				
	B.	26cm				
	C.	6cm				
	D.	5cm				
28.		quation of a progressive sinusoidal wave is given as $y = 25Sin(120t - 4x)$, where x				
		neters and t in seconds. Find the wave number.				
		25 m ⁻¹				
		57 m ⁻¹				
		4 m ⁻¹				
	D.	19.1 m ⁻¹				
29.	All the	ese are methods of polarizing an unpolarized light wave EXCEPT				

	A.	Double refraction.					
	B.	Diffraction.					
	C.	Reflection.					
	D.	By pile of plates.					
30.	Two s	ound sources emit sound of wavelengths 1.00 m and 1.01 m respectively,					
	produc	cing 10 beats in 3.0s in a gas. What is the speed of sound in the gas?					
	Α.	331 m s ⁻¹					
	B.	333 m s ⁻¹					
	C.	337 m s ⁻¹					
	D.	321 m s ⁻¹					
31.	Which	of these laws would be most applicable in estimating the magnitude of the force					
	betwee	en two static charges?					
	A.	Gauss's Law					
	B.	Coulomb's Law					
	C.	Faraday's Law					
		Maxwell's Law					
32.		Find the force of repulsion between each pair of protons of 1.6×10^{-19} C if the distance					
	betwee	n them is 5.3 × 10 ⁻¹¹ m.					
		8.2×10^{-8} N					
		4.3×10^{-18} N					
	C.	7.8×10^{-2} N					
	D.	$5.12 \times 10^{11} \text{N}$					
33.	Three	capacitors of 4μF, 8μF and 12μF are connected in parallel and a potential difference					
	of 6 V	is maintained across each capacitor. Find the total energy stored in the system.					
	A.	$4.32 \times 10^{-4} \text{ J}$					
		$7.2 \times 10^{-5} \text{ J}$					
	C.	$1.44 \times 10^{-4} \text{ J}$					
	D.	$5.8 \times 10^{-5} \text{ J}$					
34.	A cell	of e.m.f. 1.5V is connected in series with a resistor of resistance 3Ω. A high					
	resista	nce voltmeter connected across the cell registers only 0.9V. Calculate the internal					
	resista	nce of the cell.					
	A.	5.0Ω					
	B.	4.5Ω					
	C.	2.4Ω					
	D.	2.0Ω					
35.	The ef	fective resistance in a parallel arrangement is					
	A.	less than the smallest resistance in the network.					
	B.	more than the smallest resistance in the network.					
	C.	same as the highest resistance in the network.					

	-						
	D.	twice the smallest resistance in the network.					
36.	An ele	An electron moves in a circular path of radius 0.003m perpendicular to a uniform magnetic					
	field.	The electron has a velocity of 106m/s. Find the magnitude of the uniform field.					
	A.	1.90 x 10 ⁻³ Wbm ⁻²					
	B.	5.69 x 10 ⁻³ Wbm ⁻²					
	C.	5.69 x 10 ⁻² Wbm ⁻²					
	D.	6.89 x 10 ⁻³ Wbm ⁻²					
37.	Two p	arallel current-carrying conductors attract each other when the current in them					
	flow in	n opposite direction; this is a statement of					
	A.	Ohm's law.					
	B.	Faraday's law.					
	C.	Lenz's law.					
	D.	Ampere's law.					
38.	A wir	e 50 mm long carries a 25 A current. If it is placed in a magnetic field $\vec{B} = 0.2 \text{ T}$,					
	what is the force on the wire?						
	A.	1.20N					
	B.	2.50N					
	C.	0.25N					
	D.	0.20N					
39.	A 200	2 load is connected to the secondary coil of a transformer which has N_p/N_s ratio of					
	1/4. C	alculate the maximum current through the load if the input V _{rms} is 120V.					
	A.	34 A					
	B.	24 A					
	C.	480 A					
	D.	480√2 A					
40.		ductor is capable of dissipating 50W of heat energy when a current 0.8A flows					
	throug	th it at a certain frequency. Calculate its impedance when the reactance of the					
	induct	or is 50Ω .					
	A.	62.5 Ω					
	B.	40.0 Ω					
	C.	92.8 Ω					
	D.	1.0 Ω					
41.		of the following is/are true about the oil drop falling freely under gravity in the e of electric field?					

Over time, terminal velocity is attained.

III: At terminal velocity, the drop no-longer accelerates.

II: The net force acting on the oil drop is zero at terminal velocity.

I:

A.

IV: $F_e = F_g$

I and II only

	C.	I, II, and III only				
	D.	IV only				
42.	Light	of frequency 1.00 x 10 ¹⁵ Hz illuminates a metal surface. The ejected				
100	photoelectrons are found to have a maximum kinetic energy of 1.78eV. Find the threshold					
		ncy for this metal.				
		5.70 x 10 ¹⁴ Hz				
		4.52 x 10 ¹⁴ Hz				
		0.56 x 10 ¹⁴ Hz				
	D.					
43.	X - ray	y is sometimes called				
		Laue ray.				
	B.	Bragg ray.				
	C.	Roentgen ray.				
	D.	Compton ray.				
44.		is the smallest Bragg angle for x rays of wavelength 30 pm to reflect from reflecting				
		spaced 0.30 nm apart in a calcite crystal?				
		4.2°				
		3.13°				
		3.11°				
	D.	2.9°				
45.		ate the de Broglie wavelength of electron waves passing through a potential ence of 200 V.				
	A.	19.3 x 10 ⁻⁹ m				
	B.	3.20 x 10 ⁻⁹ m				
	C.	6.19 x 10 ⁻⁹ m				
	D.	9.8 x 10 ⁻⁹ m				
46.	Which	of the following is the correct order of the strength of alpha, beta and gamma in a				
	magnet	ic field?				
	A.	alpha > beta > gamma				
	B.	alpha > gamma > beta				
	C.	beta > alpha > gamma				
	D.	beta > gamma > alpha				
47.	What	is the decay constant of Uranium-235 that has a half-life of 15 days?				
	A.	0.0462 s^{-1}				
	B.	5.347 x 10 ⁻⁷ s ⁻¹				
	C.	235.67 s ⁻¹				
	D.	0.4567 x 10 ⁻⁷ s ⁻¹				
48.	Pure s	ilicon can be converted to a p-type material by adding a controlled amount of				

B.

II and III only

49.	In a se	mi-conductor junction diode, as the depletion or barrier layer is forward biased
	the lay	er
	A.	widens.
	B.	narrows.
	C.	remains constant.
	D.	widens then narrows.
50.	The lo	ss of power as a signal passes along a wire is known as
	A.	Reduction.
	B.	Attenuation.

A. trivalent atoms.
B. tetravalent atoms.
C. pentavalent.
D. hexavalent atoms.

C. Depreciation.D. Disappearance.

Answer FOUR Questions; One Question from each Course.

PHY 001: MECHANICS AND PROPERTIES OF MATTER

1.	(a) S	State the t	mits and dimensions of the following quantities:	
		(i) Surfa	ce tension	(1 mark)
		(ii) frequ	ency	(1 mark)
		(iii) Show	w that the expression $V^2 = V_0^2 + 2aS$ is dimensionally correct	t, where V and
		Vo re	present the final and initial velocities, a is acceleration and S	is the
		displa	acement.	(2 marks)
	(b)	A race o	ear moves such that its position is given as $X = 0.75t^2 + 5.0t + 1$.	Find:
		(i)	the position at t = 4.00s	(2 marks)
		(ii)	the instantaneous velocity of the car at t = 4.00s	(2 marks)
		(iii)	the average velocity for the time interval $t = 2.00s$ to $7.00s$	(2 marks)
2.	(a)	State	Pascal's principle.	(1 mark)
	(b)			
		(i)	Surface tension	(1 mark)
		(ii)	Viscosity.	(1 mark)
		(iii)	The electromagnetic poynting vector \overrightarrow{S} is defined as $\overrightarrow{S} = \overrightarrow{E}$	x H, where E
		а	\overrightarrow{H} are the electric and magnetic fields respectively. $\overrightarrow{E} = 1$	0.10î + 0.20ĵ
			$+0.60$ k and $\overrightarrow{H} = 0.40$ î $+9.80$ ĵ $+0.10$ k. Calculate \overrightarrow{S} .	(3 marks)
	(c)		nass of an object in air is 50g and it appears to have a mass of ersed in water. Find the:	35g when
		(i) r	elative density of the substance;	(2 marks)
			lensity of the substance.	(2 marks)

PHY 002: HEAT, WAVES AND OPTICS

- (a) State any three assumptions of kinetic theory of gases. (3 marks)
 - (b) What is the pressure of 3 moles of an ideal gas at a temperature of 27°C, having a volume of 5 litres? (2½ marks)
 - (c) A piece of copper of mass 0.04Kg at 160°C is transferred into a copper calorimeter of mass 0.06Kg containing 0.05Kg of water at 20°C. What will be the final temperature of the mixture? Specific heat capacity of copper and water are 400J/Kg/K and 4200J/Kg/K respectively. (Neglecting heat losses to the surroundings). (4½ marks)
- (a) (i) State the principle of superposition of waves. (1 mark)
 - (ii) Briefly describe Huygens principle with aid of appropriate diagram. (2 marks)
 - (b) The manufacturer's manual of a violin shows that the heaviest and lightest strings have linear densities of 6.0 and 0.58 kg/m respectively. Assuming that strings are of the same material, determine the ratio of their radii. (3 marks)

(c)	The voltage	from an	electromagnetic	wave	travelling	on a	transmission	line	is g	given
	by									

$$V(x,t) = 10e^{-\alpha}Sin(4\pi x 10^{9}t - 30\pi x)V$$

where x is the distance in meters from the transmitter.

- (i) Find the frequency, wavelength and phase velocity of the wave. (2 marks)
- (ii) Find the voltage at $x = 2.1 \times 10^{-2}$ cm and t = 0.32s, (1 mark)
- (iii) If the amplitude of the wave is measured to be 2V, Find α.(1 mark)

PHY 003: ELECTRICITY AND MAGNETISM

- (a) Define electromotive force. (1 mark)
 - (b) A cell of e.m.f. E and internal resistance r was connected in series with two series external resistors, A (of 8-ohms) and B (of 2-ohms). A high resistance voltmeter connected across A was found to read 8volts. When another resistor C (of 8 ohms) was connected parallel to A, and then across A and C, the voltmeter read 6 volts.
 - (i) Draw the circuit diagrams of the two arrangements. (2 marks)
 - (ii) Calculate the internal resistance of the cell. (5 marks)
 - (iii) Calculate the e.m.f. of the cell. (1 mark)
 - (c) Explain electrostatic induction and mention ONE method of producing electrostatic charges. (1 mark)
- (a) What is electrostatics? (1 mark)
 - (b) Explain, with the aid of a diagram, how you can charge a gold leaf electroscope positively, using the method of charging by induction. (4 marks)
 - (c) Two charges are located on the positive x-axis of a coordinate system. Charge q₁ = 2 x 10⁻⁹ C is 2 cm from the origin, and charge q₂ = 3 x 10⁻⁹ C is 4 cm from the origin. What is the magnitude of the total force exerted by these two charges on a charge q₃ = 5 x 10⁻⁹ C located at the origin? (5 marks)

PHY 004: MODERN PHYSICS

- (a) Calculate the total binding energy per nucleon of an alpha particle.
 The masses of the neutron, proton and alpha particles are respectively 1.008665u, 1.007825u and 4.004603u. (3 marks)
 - (b) (i) Radium with an atomic mass of 226, has a half-life of 800 years. For 0.5g of radium, calculate the number of decays per second. (4 marks)
 - (ii) Define half -life of a radioactive sample. (1 mark)
 - (c) Which of the following radiations: α-rays, β-rays and γ-rays
 - (i) are similar to X-rays? (½ mark)
 - (ii) are easily absorbed by matter? (½ mark)
 - (iii) travel with the greatest speed? (½ mark)
 - (iv) are similar in nature to cathode rays? (½ mark)
- (a) (i) State four properties of X-rays.
 (2 marks)

(ii) State four uses of X-rays. (2 marks)

- (b) (i) Calculate the minimum wavelength of X-ray that can be produced by an electron accelerate by a potential difference of 20 kV between the electrodes. (2 marks)
 - (ii) Write down the mathematical form of Bragg's law and explain each term.

(2 marks)

(iii) Determine the wavelength of the x-ray that was Bragg-diffracted by a cobalt crystal of interatomic spacing of 4.07x10⁻¹⁰ m, if the first order scattering angle is 24°. (2 marks)