JOINT UNIVERSITIES PRELIMINARY EXAMINATIONS BOARD

2015 EXAMINATIONS

MATHEMATICS: SCI-J154

MULTIPLE CHOICE QUESTIONS

1. Find the non-zero negative value of x which satisfies the equation

$$\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix} = 0$$

- A. 2
- В. -2
- C. $\sqrt{2}$
- D. $-\sqrt{2}$

2. If
$$Z = \begin{bmatrix} 2 & 3 & 3 \\ 4 & 1 & 0 \\ 1 & 4 & 0 \end{bmatrix}$$
, find determinant of Z .

- A. 35
- B. 45
- C. -35
- D. 48

3. Compute
$$\left(1 + \frac{3}{1+i}\right)^2$$
.

A.
$$\frac{-8}{2} - \frac{15}{2}i$$

B.
$$4 - \frac{15}{2}i$$

A.
$$\frac{-8}{2} - \frac{15}{2}i$$

B. $4 - \frac{15}{2}i$
C. $\frac{17}{2} - \frac{15}{2}i$

4. Find the centre and radius of the circle $8x^2+8y^2-24x-40y+18=0$. A. (3/2, 5/2) and r = 3/2B. (-3/2, 5/2) and r = 5/2C. (3/2, -5/2) and r = 3/2D. (3/2, 5/2) and r = 5/25. Find the equation of the tangent to the circle $2x^2 + 2y^2 = 30$ at the point (-3,6). A. x + y - 15 = 0B. x - 2y + 5 = 0C. x + 2y - 5 = 0D. x - 2y + 15 = 06. Given the equations of the ellipse $x^2/2+y^2=1$. Find the equation of the directrices. A. $x = (0, \pm 1)$ B. $x = (0, \pm 2)$ C. $x = (0, \pm 3)$ D. $x = (0, \pm 4)$ 7. Find the gradient of the curve $y = x^3 - 6x^2 + 11x - 6$ at the point (1, 0) A. -1 B. -2 C. 1 D. 2 8. Given sets $A = \{a, b, 1, 3\}$ and $B = \{a, 2, 4\}$, find $A \cup B$. B. $\{a, b, 1, 2, 3, 4\}$ C. $\{a, b, 1, 3\}$

9. Let P be the set of prime factors of 42 and Q be the set of prime factors of 45. Find $P \cap Q$.

D. $\{b, 1, 2, 3, 4\}$

A. {2}

B. {3}

C. {7}

D. {5}

- 10. A polynomial $2x^3 + ax^2 + bx 1$ has a factor (x 1) and the remainder when it is divided by (x 2) is -4. Find a + b.
 - A. -1
 - B. 1
 - C. -2
 - D. 2
- 11. Solve the equation $\log_3 x + \log_x 3 = \frac{10}{3}$
 - A. $\sqrt{3}$, 9
 - B. $27, \sqrt{3}$
 - C. 10, 9
 - D. $27, \sqrt[3]{3}$
- 12. Solve the equation $\sqrt{2x+3} \sqrt{(x-2)} = 2$
 - A. 3,6
 - B. 3, 11
 - C. 27,3
 - D. 3, 10.
- 13. If $y = x (x^6 1)$, find the range for which y = 0.
 - A. $(-\infty,0) \cup (0,\infty)$
 - B. $(-1, -\infty) \cup (0, \infty)$
 - C. $[-1,0) \cup [0,1]$
 - D. $(-\infty, \infty)$
- 14. Evaluate $\lim_{x \to -3} \left\{ \frac{3x^2 27}{x + 35} \right\}$
 - A. -18
 - B. 9
 - C. 0
 - D. 3

- 15. Evaluate $\int_{1}^{e} \frac{1}{x} dx$
 - A. 0
 - B. 2
 - C. 1
 - D. 2e
- 16. Evaluate $\int_0^{\frac{\pi}{2}} \cos x \, dx$
 - A. 2
 - B. 7
 - C. -1
 - D. 1
- 17. Evaluate $\lim_{x \to \infty} \left\{ \frac{2x^3 + x^2 5}{x^3 + 2x + 1} \right\}$
 - A. 5
 - B. 0
 - C. 2
 - D. ∞
- 18. The expression $px^2 + qx + r$ equals 4 at x = 1. If the derivative is 2x + 1, what are the values of p, q and r respectively
 - A. 1, 1, 2
 - B. 1, 2, 1
 - C. 1, 0, 1
 - D. 1, -1, 2
- 19. The gradient of a curve at any point (x, y) is given by 2x + 3. If the curve passes through the origin, find the equation of the curve
 - A. x(x + 2)
 - B. x(2x + 3)
 - C. $x^2 4$
 - D. 2x + 3

- 20. The position of an object in motion at any time (t) is given by $s = 3t^3 5t 2$. Obtain the velocity of the object after 2 seconds.
 - A. 31m/s
 - B. 36m/s
 - C. 18m/s
 - D. 20m/s
- 21. Find the derivative of $2x^3 5x^2 + 2$
 - A. $x^2 10x$
 - B. $6x^2 10x$
 - C. $-10x 6x^2$
 - D. 6x 10.
- 22. Find the derivative of y = (3 + 2x) (1 x)
 - A. -1 4x
 - B. 4x -1
 - C. -4x + 1
 - D.-4x
- 23. Differentiate $(x + y)^2 = 5$.
 - A. -4
 - B. -2
 - C. -1
 - D. 10
- 24. Evaluate: $\lim_{x \to 5} \frac{x^2 25}{x 5}$
 - A. 5
 - B. 15
 - C. 10
 - D. 12

- 25. If $y = (x 1) e^{-x}$, find $\frac{dy}{dx}$
 - A. $(2-x) e^{-x}$
 - B. $e^{x} 2x$
 - $C. x e^x$
 - D. 2x
- 26. Find the modulus of 2i + 3j 4k

 - B. $\sqrt{29}$
 - C. √3
 - D. √28
- 27. Find the scalar products of a = 2i + 3j and b = -i + 4j

 - B. 10
 - C. -10
 - D. -20
- 28. Find the value of n for which the vector si + nj 3k and ni j + 5k are perpendicular.

 - B. 0^0
- 29. Obtain the projection of vector a = (3,-1.5) on the vector b = (2.1,-3)

 - A. $\frac{-2}{\sqrt{14}}$,
 B. $\frac{-2}{\sqrt{35}}$
 - C. $\sqrt{14}$
 - D. $\sqrt{35}$
- 30. Find the volume of the tetrahedron OABC with point A (2,1,1) ,B(0,-1,1) and C(-1,3,0).
 - A. $^{2}/_{5}$
 - B. $\frac{3}{4}$
 - C. $\frac{4}{3}$
 - D. $-\frac{4}{3}$

 31. The distance S in meters (m) moved by a particle in t time in seconds (s) is given by S = 1.5t² - t. Find its speed after t seconds. A. 3t m/s
B. (3t-1)m/s
C. $(3t+1)m/s$
D. (1-3t)m/s
32. A car starts from A and travels 10km due West, 20km North-West and 30km due North. Find the displacement from A.A. 51.3km
B. 53.3km
C. 43km
D. 50.3km
33. The brakes of a train are able to produce a retardation of 1.2m/s. if the train is travelling at 90km/h, at what distance from a station should the brakes be applied.A. 200m
B. 250m
C. 260m
D. 240m
34. A particle is projected with a velocity of 20m/s up a smooth inclined plane of inclination 30°.Find the distance described up the plane.A. 40.8m
B. 48m
C. 40m
D. 38m
35. A block of mass 20kg rests on a horizontal plane whose coefficient of friction is 0.4. Find the least force required to move the block if it acts horizontally.A. 190N
B. 80N
C. 196N
D. 78.4N

- 36. A mass of 8kg hangs in equilibrium, suspended by two light inelastic strings making angles 30° and 45° with the horizontal, calculate the tensions in the two strings.
 - A. 57.4N, 70.3W
 - B. 50N, 70W
 - C 60.5N, 60.5W
 - D. 50N, 50W
- 37. If $\vec{a} = 2i + 3j + 5k$, $\vec{b} = 3i 5j + 2k$, $\vec{c} = i j$. calculate λ such that $2\vec{a} 5\vec{b} + \lambda \vec{c}$ is perpendicular to the x axis.
 - A. 8
 - B. 9
 - C. 10
 - D. 7
- 38. The probabilities that John and Joanna will passed an examination are $\frac{2}{3}$ and $\frac{4}{5}$ respectively.
 - Find the probability that only one of them will pass.
 - A. $\frac{2}{15}$
 - B. $\frac{4}{15}$
 - C. $\frac{1}{15}$
 - D. $\frac{6}{15}$
- 39. In how many ways can a committee of 2 men and 2 women be formed from 3 men and 5 women?
 - A. 12
 - B. 30
 - C. 20
 - D. 10
- 40. The formular for Spearman's rank correlation is:
 - A. $1 + \frac{6\sum d^2}{N(N^2 1)}$
 - B. $1 \frac{\sum d^2}{N(N^2 1)}$
 - C. $1 \frac{6\sum d^2}{N(N^2 1)}$
 - D. $1 \frac{6\sum_{N} d^2}{N^2}$

41. The following are continuous random variables except A. The temperature of an object
B. The distance between two points
C. The population of a school
D. The marks obtained by a group students
42. The following are features of a standard normal curve except A. It is bell-shaped
B. The area under the curve is 1
C. It is symmetric about the mean
D. The variance is zero
43. An experiment in which the outcomes are two possibilities: "Success" or "failure" is said to be A. Binomial
B. Normal
C Geometric
D. Bernoulli
44. The range of values of rank correlation (r_{rank}) is A. $-1 \le r_{rank} \le 1$
B. $0 \le r_{rank} \le 1$
C. $-1 \le r_{rank} \le 0$
D. $r_{rank} \ge 1$
45. Find the geometric mean of the data: 5, 15, 10, 8, 12.
A. 72000
B. 821.1
C. 9.36
D. 10
46. One can easily determine the of a distribution from histogram. A. mean
B. mode
C. median
D. standard deviation.

47. Find the mean of the following scores

Scores(x)	61	64	67	70	73
Freq. (f)	5	18	42	27	8

- A. 65
- B. 67.45
- C. 67
- D. 68
- 48. What is the mode of the following numbers 1,8,8,10,9,2,7,8,2,2,4,1,1,8,7,1
 - A. 8
 - B. 8 and 1
 - C. 1
 - D. None of the above
- 49. Thelevel of a test is the maximum probability of committing Type I error when the null hypothesis holds.
 - A. acceptance
 - B. rejection
 - C. significance
 - D. significant
- 50. The standard deviation of a statistic describes
 - A. the shape of its distribution.
 - B. the centre of its distribution.
 - C. the amount of skewness associated with its distribution.
 - D. the amount of variability associated with its distribution.

MATHEMATICS ESSAY QUESTIONS

1 (a). Given $A = \{-5, -3, -1, 0, 1, 2, 3\}$, $B = \{-4, -3, 0, 3, 5, 8\}$. **MAT001**

Find $A \triangle B$. 2 Marks

(b) If A, B, and C are any sets, show that $A \cup (B \cup C) = (A \cup B) \cup C$

3 Marks

(c) In an election involving three parties for the chairmanship and gubernatorial election of Lagos State, voters cast their votes as follows:

190 voted for party A, 200 for party B and 250 for party C. 80 voted for A and B, 60 voted for A and C, 100 voted for B and C and 40 voted for B alone.

If 500 people voted during the election, find:

- i. The number of voters who voted for all the three parties.
- ii. The number of voters who voted for A and B but not C. 3 Marks
- iii. The number of voters who did not vote for any party.

 4 Marks
- 2 (a) i. Evaluate the determinant A.

MAT 001

3 Marks

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

3 Marks

ii. what do you conclude from 2a(i)?

- 1 Mark
- iii. Resolve $\frac{x^3-1}{(x+3)(x+1)^2}$ in partial fractions. Hence, obtain its Binomial

expansion up to terms x^2 .

4 Marks

(b) If $cos(x + \alpha) = sin(x + \beta)$, find tan x in terms of α and β .

- 3 Marks
- (c) If $\sin A = \frac{4}{5}$ and $\cos B = \frac{12}{13}$, where A is obtuse and B is acute, find without

using tables the values of: i. sin(A + B) ii. tan(A - B).

4 Marks

- 3 (a) By using the reduction formula for $\int \sec^n x dx$, evaluate the definite integral MAT 002
 - $\int_0^{\frac{\pi}{4}} \sec^6 x dx$ 10 Marks
- (b) Find the area enclosed by the curve $y = x^2$ and the x-axis between

$$x_1 = 0$$
 and $x_2 = 2$. 5 Marks

3 Marks

4 Marks

- 4 (a) Evaluate $\lim_{x\to 0} \left(\frac{1}{x} \csc x\right)$. MAT 002
 - (b) By Taylor's theorem, show that $\log_e(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + \frac{x^n}{n}$, and hence evaluate $\log_e(1.1)$ to four decimal places.
 - (c) Using the trapezoidal rule with ordinates x = 1.0, 1.4, 1.8, 2.2, 2.6, 3.0; evaluate $\int_{1}^{3} \frac{1}{x+1} dx.$ 4 Marks
- In the study of motion of rigid bodies, explain the following concepts: MAT 003
 (a) i. Moment of inertia of the system
 4 Marks

Radius of gyration of the system.

ii.

- (b) Find the moment of inertia and radius of gyration of a uniform thin rod of length 2a, density ρ about an axis passing through one end of the rod perpendicular to its length 7 Marks
- 6 (a) State the Newton's law of cooling and write out the differential equation

 MAT 003

 describing the temperature of the body.

 4 Marks

- (b) A beaker of water initially at 100°C is allowed to cool in a room maintained at 15°c. After two minutes, the water temperature is 85°C. Find the temperature of the water after four minutes and the time taken for the water to reach 40°C (Hint: use Newton's law of cooling 6(a) above).
- 5 Marks

(c) If the position vectors of points A, B and C are $\underline{a} = \underline{i} + 3\underline{i} - 7\underline{k}$,

$$\underline{\mathbf{b}} = 7\underline{\mathbf{i}} + 6\underline{\mathbf{j}} + 5\underline{\mathbf{k}}$$
 and $\underline{\mathbf{c}} = 9\underline{\mathbf{i}} + 7\underline{\mathbf{j}} + \beta\underline{\mathbf{k}}$, respectively. Find

i.
$$|\underline{a} + \underline{b}|$$
 3 Marks

- ii. the value of β if A, B and C are Collinear. 3 Marks
- 7(a) The following data represent scores of 50 students in a Statistics test.

MAT 004

By using a class interval of five (45 - 49, 50 - 54, etc):

- i. Prepare the frequency distribution table.
- ii. What is the coefficient of variation?

 4 Marks
- iii. Does the data represent a sample or a population?
- (b) Discuss briefly the measures of location associated with frequencies hence; explain mean, mode, and median.

6 Marks

4 Marks

8(a) i. Find the coefficient of linear correlation between the variables A and B in the below table

ne							
A	1	2	3	4	5		
В	1	2	3	6	8		

MAT 004 3 Marks ii. Five students were ranked according to their scores in Mathematics and Physics thus:

Student	A	В	C	D	E
Mathematics	1	3	5	2	4
Physics	2	1	3	4	5

Calculate the Spearman's rank correlation coefficient.

3 Marks

(b) Differentiate between discrete and continuous random variable.

- 2 Marks
- (c) A company that manufactures computer chips, finds that 5% of the chips they produce are defective. If 8 chips are selected at random, find the probability that:
 - i. 2 chips will be defect

2 Marks

ii. at least 2 chips will be defective.

2 Marks

iii. calculate for (i) and (ii) above, the number of expected defective chips and variance in a sample of 2, 000 chips.

3Marks